If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+28x-56=0
a = 3; b = 28; c = -56;
Δ = b2-4ac
Δ = 282-4·3·(-56)
Δ = 1456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1456}=\sqrt{16*91}=\sqrt{16}*\sqrt{91}=4\sqrt{91}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-4\sqrt{91}}{2*3}=\frac{-28-4\sqrt{91}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+4\sqrt{91}}{2*3}=\frac{-28+4\sqrt{91}}{6} $
| 9=3(5c-7) | | x2+3x+11=0 | | x+x/3+30=42 | | w+–56=9 | | b/4=3.8 | | 2x+x/4+18=72 | | h+3.9=9.9 | | 8x+-3=21 | | f+2.23=13.07 | | 24=4(s+1) | | 6e/5=e-2 | | -7x-9=-2x=31 | | |6-5v|+2=1 | | 3(-6y+1)=4.7 | | 10=k/3+4 | | 5(h+4)=25 | | 2x+1/9=2 | | -27=-3(2x-1 | | 86.8-0.5m=80.8 | | 5x-13=13-5x | | x+5x=324 | | 30+8c=334 | | t+5/7=5 | | t^2+t-7=0 | | 2x+48=246 | | x^2+36x+332=0 | | 5e=40 | | 15-x^2=20 | | 4x-500=880 | | 2000+24x=4850 | | 13x+2x=3x | | X^3-11x^2+62x-49=0 |